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Introduction

Identification of metabolites is an important aspect of drug
discovery and development at various stages in the process.[1]

Early in lead discovery, metabolite identification is often re-
quired to support the chemical optimization toward metabol-
ically stable compounds. Later in drug development it is essen-
tial to investigate the metabolic profile of a compound and to
study the potential activity or toxicity of major metabolites.
Predictions of metabolites can assist these activities in several
ways. Early metabolite screening can be facilitated significantly
by predictions. For example, fast LC–MS scans can be carried
out to specifically detect predicted metabolites,[2] allowing rela-
tively simple experimental setup and data analysis. Prediction
methods can be helpful subsequently when interpreting the
results and assessing possible chemical modifications to block
metabolically labile sites. Furthermore, recent developments
demonstrate that metabolite prediction in combination with
MS data prediction can be used to facilitate the analysis of
complex LC–MS–MS data resulting from full metabolite iden-
tification experiments.[3]

Many different methodologies to predict metabolites or
sites of metabolism have been reported recently. The metabol-
ic fate of a molecule depends on its chemical reactivity toward
several metabolic processes that can occur, as well as on its in-
teractions (affinity and binding orientation) with the biotrans-
formation enzymes involved. An important approach in the
prediction of metabolites is based on explicit calculation of
(relative) chemical reactivities of different sites in a molecule
and/or prediction of the binding of the molecule to metabolic

enzymes. It is well established that calculated energies of hy-
drogen radical abstraction (e.g. by approximate quantum
chemical methods) are a useful indicator of the metabolic labil-
ity of various aliphatic positions toward a range of cytochrome
P450 catalyzed reactions.[4–6] Other calculations are used to
assess the regioselectivity of aromatic hydroxylations by P450
enzymes.[4] Frontier orbital theory or Fukui calculations have
been applied to predict the regioselectivity of aromatic hy-
droxylation[7] or to identify metabolically labile sites in com-
plete molecules.[8] Docking has been used to predict the bind-
ing mode of ligands for CYP 2D6,[9] and the predicted exposure
to the reactive heme cofactor was shown to correlate with the
known sites of metabolism of the ligands. In a less explicit ap-
proach, a GRID-based (binding) interaction pattern of the
CYP 2C9 active site was matched with those of its substrates
to predict likely sites of metabolism.[10] The program Meta-
Site[11] combines the latter method to account for binding to
several P450 isoenzymes with an approximate QM-based esti-
mate of the reactivity of the individual atoms in a molecule to
predict the site of metabolism. The above “first principles” ap-
proaches to predict metabolism are based on the chemical
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Predictions of potential metabolites based on chemical structure
are becoming increasingly important in drug discovery to guide
medicinal chemistry efforts that address metabolic issues and to
support experimental metabolite screening and identification.
Herein we present a novel rule-based method, SyGMa (Systematic
Generation of potential Metabolites), to predict the potential me-
tabolites of a given parent structure. A set of reaction rules cover-
ing a broad range of phase 1 and phase 2 metabolism has been
derived from metabolic reactions reported in the Metabolite Da-
tabase to occur in humans. An empirical probability score is as-
signed to each rule representing the fraction of correctly predict-
ed metabolites in the training database. This score is used to
refine the rules and to rank predicted metabolites. The current
rule set of SyGMa covers approximately 70% of biotransforma-
tion reactions observed in humans. Evaluation of the rule-based

predictions demonstrated a significant enrichment of true metab-
olites in the top of the ranking list : while in total, 68% of all ob-
served metabolites in an independent test set were reproduced
by SyGMa, a large part, 30% of the observed metabolites, were
identified among the top three predictions. From a subset of cy-
tochrome P450 specific metabolites, 84% were reproduced over-
all, with 66% in the top three predicted phase 1 metabolites. A
similarity analysis of the reactions present in the database was
performed to obtain an overview of the metabolic reactions pre-
dicted by SyGMa and to support ongoing efforts to extend the
rules. Specific examples demonstrate the use of SyGMa in experi-
mental metabolite identification and the application of SyGMa to
suggest chemical modifications that improve the metabolic sta-
bility of compounds.
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structures of ligands and catalytic sites, and not on prior expe-
rience or training sets. Therefore, they can potentially make
useful predictions for new compound classes with unknown
metabolic profiles. Most of these approaches are, however, lim-
ited to P450 catalyzed reactions and only indicate labile sites,
rather than predicting the actual metabolites formed. Conse-
quently, these methods are less suitable for routine use to sup-
port experimental metabolite identification.

Rule-based methods rely on metabolic rules derived by ex-
perts. Examples are Meta,[12,13] MetabolExpert,[14] Meteor,[15,16]

Metadrug,[17–19] and KnowItAll.[20] These methods have the ad-
vantages of being potentially fast and generating actual struc-
tures of metabolites. However, because large sets of metabolic
rules are being applied, these methods often generate large
numbers of unobserved metabolites, which limits their value
to chemists in identifying labile sites in a molecule. Some of
the above methods have implemented a differentiation be-
tween likely and unlikely metabolites, for example, by using
prioritization of rules[21] or a reasoning model.[15]

A recent development is to apply statistical analysis on a
large database of experimental metabolic reactions. Based on
such analysis, empirical probabilities are obtained which indi-
cate the likeliness of certain metabolism. Several methods
have been reported that use empirical scoring of metabolism
outcomes. The PASS-BioTransfo program provides a likeliness
that a certain class of biotransformation reaction will occur.[22]

The SPORCalc approach ranks sites in a molecule according to
likeliness of undergoing metabolism.[23] Also, a number of
methods have been described, such as TIMES[24] and Meta-
drug,[19] that provide a probability of predicted metabolites to
be formed.[25]

We report a new approach based on reaction rules that are
statistically evaluated on the basis of a large dataset of experi-
mental data. Based on this analysis, empirical probability
scores are calculated. The most important distinction from ex-
isting approaches as described above is that the rules are also
modified and optimized on the basis of these probability
scores in order to decrease the number of incorrect predictions
and to distinguish between more and less metabolically labile
groups. The resulting prediction tool, which we call SyGMa
(Systematic Generation of potential Metabolites), ranks predict-
ed metabolites based on the empirical probability scores. It
combines the advantages of systematically generating actual
metabolite structures, at low computational cost, with a good
differentiation between more and less likely metabolic routes.

Results

Development of the rule base

A training dataset of 6187 fully characterized metabolic reac-
tions observed in human studies was retrieved from the MDL
Metabolite Database. This dataset was used to derive and
manually optimize an extensive set of metabolic rules. Initial
rules were based on common knowledge of metabolic reac-
tions or visual inspection of frequently occurring reactions in
the experimental dataset, or they were obtained from a sys-

tematic analysis of the dataset using reaction fingerprints (see
below). Each individual rule was applied to all reactants in the
dataset. The fraction of the resulting metabolites that match
actual metabolites observed in humans was taken as an empir-
ical probability score assigned to the rule. Upon inspection of
the matching metabolic reactions, a rule was further refined to
increase the probability ratio, or split into multiple rules to ac-
count for variations in reactivity of different reaction centers
toward the specific reactions (see Experimental Section for
more details). As an example, Figure 1 illustrates the division of

a general rule for the oxidation of a primary alcohol into two
more specific rules. One rule for oxidation of an aliphatic pri-
mary alcohol was created, which matches 58 of the initial 85
experimental examples of primary alcohol oxidation in the
training set. The second rule for oxidation of a benzylic primary
alcohol covers a smaller number of experimental examples,
however, with a significantly higher probability score than the
rule for primary alcohol oxidation. The splitting of the initial
rule clearly resulted in new rules that account for the higher
susceptibility of benzylic alcohols toward oxidation relative to
aliphatic alcohols.

Another example of rule refinement is the division of an ini-
tial rule of O-glucuronidation of primary oxygen atoms into
four more specific rules. These rules account for the observa-
tions that carboxyl oxygens are glucuronidated more frequent-
ly than hydroxy oxygens, and that both groups appeared to
be more susceptible to glucuronidation when attached to aro-
matic cores than when they are attached to aliphatic groups.
These differences in chemical environment will influence the
nucleophilicity and acidity of the reacting oxygen centers. The
effects on the observed frequencies can be understood given
that glucuronidation proceeds via nucleophilic attack of the
oxygen on UDP-glucuronic acid, and that the oxygen is activat-
ed through deprotonation by an active site base.[26] In similar

Figure 1. Division of a general rule for oxidation of a primary alcohol into
two more specific rules, one for oxidation of an aliphatic primary alcohol
and one for oxidation of a benzylic primary alcohol. Corresponding SMIRKS
codes as well as calculated probability scores are shown.
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ways, distinctions could be made between more and less reac-
tive chemical subgroups for most of the various types of meta-
bolic reactions covered in the SyGMa rules.

The current rule base[27] contains 144 rules covering both
phase 1 and 2 metabolism, with calculated probability ratios
varying from 0.009 to 0.85. Figure 2a shows the distribution of

the rules for the various types of metabolic reactions. The larg-
est groups of rules are for dealkylation, carbon hydroxylation,
and other types of carbon oxidation. These groups involved
most extensive refinement during rule development, and some
key aspects of this refinement are summarized hereafter.

The largest group of rules, that of hydroxylation reactions,
comprises rules for aromatic (10), aliphatic (12), and benzylic
hydroxylation (4). Hydroxylation reactions could be naively ap-
plied to any aromatic or aliphatic carbon atom in a molecule

that is not fully substituted, potentially leading to many incor-
rectly predicted metabolites. Therefore, it was particularly im-
portant for this category of reactions to refine and split rules
to decrease the number of predictions and to distinguish be-
tween more and less likely hydroxylation products. In the rules
for aromatic hydroxylation, distinctions were made, for exam-
ple, between positions para, meta, or ortho to other substitu-
ents and whether these substituents are connected through a
carbon, oxygen, nitrogen, or other non-hydrogen atom. In ad-
dition, a priority of application was encoded in the order of
para, ortho, and meta hydroxylation. In the rules for aliphatic
hydroxylation, distinctions were made, for example, between
primary, secondary, or tertiary aliphatic carbon atoms and
whether these aliphatic carbon atoms were connected to
other aromatic, conjugated or primary, secondary, tertiary or
quaternary aliphatic carbon atoms, or to heteroatoms, etc. An
additional distinguishing feature applied in the different rules
is whether aliphatic carbon atoms are part of a ring or not.

The group of dealkylation rules includes relatively many dif-
ferent rules for N-dealkylation (i.e. 16), with probabilities rang-
ing from 0.04 (N-dealkylation of piperazine) to 0.83 (N-deme-
thylation of methylamine attached to an aromatic carbon
atom). The probabilities within this group show internal consis-
tency in that amino groups connected to aromatic carbon
atoms are always more likely to dealkylate than amino groups
attached to aliphatic groups only.

Carbon oxidation includes a number of rules for the forma-
tion of carboxyl groups. Carboxylation of primary carbon
atoms can result from hydroxylation and subsequent oxidation.
The individual steps are encoded in the rule set ; however, the
probabilities calculated for the metabolites resulting from
these steps (by multiplication of the two individual probabili-
ties as explained below) were relatively low. Because the two-
step oxidation of primary carbon atoms to carboxylic acids is
often detected and represented in the training dataset as
single metabolic reactions, one-step rules for carboxylation of
primary carbon atoms were included. These rules show signifi-
cantly higher probabilities than would be obtained from apply-
ing the individual hydroxylation and oxidation steps. Note: as
both the individual steps and the combined rules are included
in the rule set, the carboxyl groups can be formed via two dif-
ferent pathways. The present method resolves this redundancy
by selecting the path corresponding to the highest probability,
which automatically results in the selection of the most appro-
priate rules.

The results of a “reaction similarity” analysis of the complete
dataset is presented in Figure 2b. In this graph, each dot rep-
resents a reaction of the training dataset, such that the dis-
tance between each pair of dots approximately reflects the
similarity of the corresponding reactions. The similarity is eval-
uated on the basis of reaction fingerprints as detailed in the
Experimental Section. Colored dots are experimental reactions
that are reproduced by SyGMa rules in one of the indicated
categories at a certain point during rule development. Gray
dots represent metabolic reactions that are not reproduced by
SyGMa, in up to three subsequent reaction steps, with the ex-
isting rule base.

Figure 2. a) Distribution of the rules for the various types of metabolic reac-
tions. b) Projection of all reactions in the training set on a 2D plane to opti-
mally reflect reaction fingerprint distances calculated between all pairs of re-
actions. For each reaction, it was verified whether SyGMa could reproduce
the metabolite in up to three subsequent reaction steps at a certain point
during rule development. Reactions reproduced by SyGMa in two or three
steps were excluded from the analysis. Reactions reproduced by SyGMa in
one step are colored according to the rule they matched, within one of the
indicated categories. Reactions not matched by SyGMa in up to three subse-
quent reaction steps are represented by gray dots. Four clusters of hetero-
ACHTUNGTRENNUNGatom oxidation reactions (A–D) are circled and exemplified in Figure 3.
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In most cases, reactions in the database that match a single
rule have similar reaction fingerprints, and thus cluster togeth-
er in Figure 2b. Some reaction types, such as hydrolysis and N-
dealkylations, span larger differences in reaction fingerprints,
as they involve removal of highly dissimilar parts of the mole-
cules. Many reaction types, however, such as deacetylations
and demethylations appear as clear clusters in the analysis pre-
sented in Figure 2b. Dense clusters of gray dots are a strong
indication of a group of metabolic reactions that could be de-
scribed with a new rule. To illustrate this, four clusters are high-
lighted in Figure 2b, three matching existing rules and one not
matching an existing rule. Examples of reactions in each cluster
are shown in Figure 3. Cluster D was found to consist of sulfide

oxidation reactions, which were not covered by the existing
rules for sulfide and sulfoxide oxidation matching clusters A
and C. Based on this finding the rules could be extended to
cover cluster D as well. This example shows the reaction finger-

print analysis to be a useful tool for building up the rule base.
The remaining gray dots in Figure 2b are rather scattered, in
agreement with the fact that most of these reactions are
unique cases. Building rules for such reactions often leads to
rules with low probability scores, resulting in mostly false pre-
dictions, or to rules lacking sufficient examples to derive mean-
ingful probability scores. Also, part of the gray dots represent
reactions that could have been reproduced by SyGMa in more
than three subsequent reaction steps.

By themselves, the probabilities calculated for the individual
rules provide useful information to chemists looking for modi-
fications to improve metabolic stability within a chemical
series. To illustrate the information contained in the rules and
their corresponding probabilities, Figure 4 presents the top 10
“most probable” reactions of the current rule set. These rules
are most likely to generate true biotransformation metabolites
when they apply to a chemical structure. It is remarkable that
the rules in this top 10 represent modifications of well-defined
small functional groups. They provide a practical list of chemi-
cal features to avoid in a search for metabolically stable com-
pounds. On the other hand, these most probable reactions can
give useful suggestions for potential prodrugs that may be se-
lectively metabolized in vivo into an active compound.

Evaluation of the rule-based predictions

SyGMa predicts metabolites by systematically applying all met-
abolic rules in the rule set described above, for a specified
number of subsequent reaction steps. The metabolites are as-
signed the probability of the rule it was formed by, or the
product of probabilities in case of multistep metabolites. Final-
ly, the metabolites are rank-ordered by probability. When mul-
tiple subsequent reaction steps are applied, SyGMa, like other
rule-based methods, potentially produces large numbers of
metabolites. Therefore, the quality of the predictions needs to
be measured not only in terms of the ability to reproduce ex-
perimental metabolites, but also in terms of enrichment of
these true metabolites in the top of the ranking list. The per-
formance of SyGMa was evaluated on the training set, as well
as on an independent test set originating from a recent
update of the MDL Metabolite Database.

A general difficulty in the evaluation of metabolite predic-
tions is the considerable variability in the data for different

Figure 3. Typical examples of four clusters of reactions highlighted in Fig-
ure 2b. Cluster D identified sulfide oxidation reactions not yet covered by
the existing rules of sulfide oxidation. Based on this finding the rule base
was extended.

Figure 4. Top 10 “most probable” reactions; calculated probability factors are indicated above the arrows.
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parent molecules. Some compounds have been extensively
studied, resulting in the presence of numerous metabolites in
the datasets (up to 33 metabolites for one parent compound
in the training set). As a result, even in the case of a perfect
prediction, up to rank 33 would have to be considered to re-
produce 100% of the metabolites. For many other compounds,
on the other hand, only a single metabolite is reported in the
datasets. Figure 5 presents a distribution of metabolites per

parent in the two human in vivo data sets. There is a clear bias
toward compounds with a single metabolite, and it seems
likely that for many of these compounds the reported metabo-
lite profiles are not complete. This effect appears to be more
pronounced in the test set in comparison with the training set.
On average, 3.4 metabolites are reported per parent com-
pound in the training set, and only 2.2 metabolites per parent
compound in the test set. The compounds in the test set are
more recent and probably less extensively studied than the
compounds in the training set. Such imbalance can bias the
evaluation results and make the interpretation more difficult.

When SyGMa was applied to all parent compounds in the
training set, 71% of the metabolites in the data set were re-
produced. The fraction of major metabolites (metabolites in
the database that are annotated “Major” on the basis of at
least one referenced publication, suggesting these are quanti-
tatively the most important metabolites) that is reproduced is
even higher: 77%. These matches come from a large number
of predicted metabolites generated by systematically applying
all 144 rules to the parent compounds for up to three subse-
quent reaction steps. Figure 6a indicates the percentage of all
experimental metabolites in the training set that are repro-
duced (i.e. the recall) as a function of the number of metabo-
lites from the top of the ranking list that are taken into ac-
count: 44% of all experimental metabolites are reproduced
within the top 10 predicted metabolites (c) ; this includes
54% of the major metabolites (b). The dotted line (a)
shows the percentage of the predictions that are experimental-
ly confirmed (i.e. the precision): 37% of the predicted metabo-

lites at rank 1 are experimentally observed and 28% of the top
three ranked metabolites. When interpreting this number it
should be taken into account that for the majority of the com-
pounds, fewer than three metabolites have been reported and
therefore, even with an ideal ranking method, the precision of
the top three predictions could not be 100%.

The performance on the test set is very similar to the perfor-
mance on the training set: 68% of the metabolites (69% of
the major metabolites) are reproduced, and 45% of the metab-
olites are ranked in the top 10 (Figure 6b) including 49% of
the major metabolites. The similarity in performance on the
training data and test data indicates the robustness of the pre-
diction method and the rule base. The precision is somewhat
lower for the test set. This can be explained at least partly by
the fact that the test set contains fewer metabolites per parent
compound than the training set as shown in Figure 5.

To illustrate the diversity and complexity of the metabolic
pathways used in the evaluation, Figure 7 illustrates the most
important metabolic reactions of an extensively studied[28] ex-
ample from the test set, lumiracoxib. The main metabolic
modifications involve aromatic hydroxylation of the dihalo-
phenyl ring (para to amine), oxidation of the benzylic methyl
group to primary alcohol and carboxylic acid, glucuronidation
of the carboxyl group, and condensation of the amine and car-
boxyl groups resulting in ring closure. These modifications
were all predicted in the top five of the ranking list. Many mul-
tistep metabolites, involving combinations of these modifica-

Figure 5. Distribution of metabolites per parent compound in the training
(*) and test (*) sets of human in vivo metabolite data.

Figure 6. Percentage of experimental metabolites that are reproduced
(recall ; c and b) and the percentage of the predictions that are experi-
mentally confirmed (precision; a) in a) the training set and b) the test set
as function of the number of metabolites from the top of the ranking list
that are taken into account. Solid lines represent the results for all metabo-
lites, dashed lines (b) for major metabolites only.

ChemMedChem 2008, 3, 821 – 832 B 2008 Wiley-VCH Verlag GmbH&Co. KGaA, Weinheim www.chemmedchem.org 825

SyGMa: Prediction of Metabolites

www.chemmedchem.org


tions, are also reported. However, because probabilities of
these metabolites are calculated as the product of the proba-
bilities of the individual steps, they end up further down the
ranking list of predicted metabolites. In total, all 15 fully char-
acterized metabolites of lumiracoxib reported in the database
are reproduced by SyGMa.

An important application of metabolite prediction in phar-
maceutical research is to provide information on the basis of
which useful suggestions for chemical modifications can be
made to improve the metabolic profile in a lead series. Espe-
cially cytochromes P450 (CYPs) are generally considered as the
most important family of metabolic enzymes that determine
the metabolic stability of druglike molecules. To evaluate the
usefulness of SyGMa specifically for predicting P450 metabo-
lism, 127 single-step P450 reactions were selected from the
test set, that is, reactions indicated in the Metabolite Database
to be metabolized by one or more CYP isoenzymes. A subset
of 118 SyGMa rules, covering only phase 1 metabolism, was ap-
plied in a single step to the 106 reactants of this dataset.
Figure 8 shows the fraction of the 127 metabolites that are re-
produced as a function of the ranks considered in the predic-
tion; 107 experimental metabolites, that is, 84%, were repro-
duced by SyGMa, and 66% of the metabolites were predicted
in the top three of the ranking list. This indicates that SyGMa,
despite the fact that it has not been trained specifically to re-
produce CYP metabolites, and without taking into account
which CYP isoenzymes are involved in the metabolism, is capa-
ble of identifying most of the relevant CYP-catalyzed metabolic
reactions in the top three of the ranking list.

Comparison with other software

An extensive comparison of various metabolite prediction
methods is beyond the scope of this paper. Nevertheless, the
performance of SyGMa could be put into perspective by com-

paring it against published results from two well-known me-
tabolite software packages: MetaSite and Meteor. The method-
ology used by MetaSite is based more on first principles and
differs significantly from SyGMa. Furthermore, it predicts
atomic sites in the molecule likely to be metabolized, rather
then actual metabolites. MetaSite was evaluated by Zhou
et al.[29] on the basis of a dataset of CYP 3A4-catalyzed meta-
bolic reactions. This dataset was not reported and is likely to
overlap significantly with our training set. Therefore, we did
not test SyGMa with this dataset. Instead, it appears reasona-
ble to assume that the challenge posed by the test set by
Zhou et al. is comparable with our own test set of P450 reac-
tions. MetaSite identified 60–70% of all metabolic sites in the
top three of the ranking list[29] (figure 3 in ref. [29] , top left
panel), depending on the CYP 3A4 protein structure used. This
is similar to the 66% of P450 metabolites that are reproduced
by SyGMa within the top three (Figure 8). The present evalua-
tion of SyGMa is in fact more stringent, because a SyGMa pre-

Figure 7. Summary of the most important metabolic reactions of lumiracoxib, a thoroughly studied example from the test set of metabolic reactions.[28] Ranks
at which the metabolites were predicted by SyGMa are indicated. The reaction center is indicated in boldface. Note: ring closure, as predicted by SyGMa at
rank 4 (indicated by dashed arrows) is not reported for the parent directly. For several metabolites, however, such as hydroxyphenyl (predicted at rank 1), the
ring closure product (predicted at rank 16) is reported.

Figure 8. Percentage of P450 metabolites that are reproduced (recall ;
c*c) and the percentage of the predictions that are experimentally
confirmed (precision; a*a) as a function of the number of reactions
from the top of the ranking list that is taken into account.
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diction was considered correct only if the true metabolite was
generated, whereas for MetaSite only the correct site of me-
tabolism was sufficient.

Meteor, like SyGMa, is a rule-based method. Whereas SyGMa
ranks metabolites on a practically continuous probability scale,
Meteor assigns one out of five categories of likelihood to each
predicted metabolite, which are designated Probable, Plausi-
ble, Equivocal, Doubted, and Improbable.[15] Testa et al.[16] eval-
uated Meteor results for 10 drugs, four of which were present-
ed with enough detail to allow a comparison with SyGMa. The
test involved single-step metabolic reactions only, and to eval-
uate the number of true predictions the first three categories,
Probable, Plausible, and Equivocal, were considered positive. In
all four cases the true predictions by Meteor included predic-
tions assigned an “Equivocal” likelihood. All of the correctly
predicted metabolites by Meteor were also generated by
SyGMa. SyGMa does not define a threshold for positive and
negative predictions. Therefore, to compare both approaches
we consider the top N predictions by SyGMa as positive, with
N chosen to include these common true predictions. Table 1

presents the results of the comparison. In summary: for gal-
anthamine and indinavir, Meteor and SyGMa perform equally
in terms of the number of true and false predictions. For the
other two compounds SyGMa outperformed Meteor: in the
case of tramadol, SyGMa identifies an additional observed me-
tabolite that was missed by Meteor, and for omapatrilat SyGMa
predicts the same number of observed metabolites among a
much smaller number of false predictions.

Species differences

The probabilities based on human in vivo data were compared
with probabilities calculated on the basis of human in vitro
data, rat in vivo data, and rat in vitro data (without changing
the rules). Figure 9a indicates that overall, the probabilities ob-
tained with human in vitro data correlate well with the proba-

bilities based on the in vivo data. However, significant differen-
ces are present for some rules. Some of these differences can
be rationalized on the basis of the experimental differences.
For example, two “outliers” in Figure 9a are identified to be N-
hydroxylation (A) and N-acetylation (B) of aromatic amine
groups, as in anilines. These reactions are depicted in
Figure 10. N-Acetylation (B) has a relatively high probability
in vivo, while its probability in vitro is low. This can be ex-
plained by the fact that in vitro experiments (i.e. microsomal
incubations) in general lack N-acetyl transferase activity. On the
other hand, N-hydroxylation (A) has an intermediate probabili-
ty in vitro, whereas its probability in vivo is low. Possibly, in the
absence of the N-acetyl transferase activity in in vitro experi-
ments, N-hydroxylation becomes a more important metabolic
route for aromatic amines.

Table 1. Comparison between SyGMa and Meteor predictions for four
drugs.

Predictions Meteor SyGMa

galanthamine
true predictions 6 6
false predictions 8 8
missed 0 0
tramadol
true predictions 4 5
false predictions 5 2
missed 4 3
omapatrilat
true predictions 2 2
false predictions 11 4
missed 1 1
indinavir
true predictions 5 5
false predictions 31 30
missed 0 0

Figure 9. Probability scores for metabolic rules calculated based on
a) human in vitro data and b) rat in vivo data plotted against probabilities
based on human in vivo data. The data are presented on a logarithmic scale.
Note that for 30 rules no examples were present in the human in vitro data-
set and were left out in panel a). These are mostly phase 2 reaction rules, for
example, for acetylation, sulfation, glycination, glucuronidation, and phos-
phorylation, but also some less common phase 1 oxidation reactions. Only
three rules were not represented in the rat in vivo dataset and were left out
in panel b).

Figure 10. Metabolic routes of aromatic primary amines in vivo and in vitro.
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Figure 9b shows that the correlation between probability
scores from human and rat in vivo data is significantly higher.
This indicates that interspecies differences between human
and rat metabolism, in terms of overall probabilities for differ-
ent types of reactions, are smaller than differences between
in vivo and in vitro results.

Applications

To illustrate the use of SyGMa in the context of medicinal
chemistry, it was applied to buspirone. The metabolism of bus-
pirone has been extensively studied and involves many differ-
ent metabolites. Figure 11 presents a summary of the metabol-
ic pathways that are known from in vitro experiments, that is,
in human liver microsomes,[30] indicated by the solid arrows.
SyGMa reproduced all these experimental metabolites. Note
that at ranks 3, 4, and 5, SyGMa generated the N-dealkylation
products complementary to the 1-pyrimidinylpiperazine me-
tabolite (rank 2) as well the two products from the alternative
N-dealkylation reaction (cleaving off the 8-azaspiro ACHTUNGTRENNUNG(4,5)decane-
7,9-dione moiety) at probabilities equal to rank 2. The metabo-
lite reproduced at rank 221 involved three subsequent reac-
tions steps, hydroxylation (rank 9) as well as hydrolysis of the
2,6-piperidinedione ring followed by ring closure.

At Organon, SyGMa predictions are now used to guide fast
metabolite screening in in vitro samples from microsomal sta-
bility assays, by using multiple reaction monitoring (MRM). In
this approach a triple quadrupole mass spectrometer is set up
to specifically detect a predefined set of masses (e.g. from
SyGMa predictions) and fragments. This MRM approach has
been evaluated with buspirone as a test case. In addition to
the known metabolites, SyGMa predicted an N,N-de-ethylation,

breaking up the piperazine ring, as well as oxidation of the pi-
perazine ring by the addition of a keto group. These metabolic
reactions are indicated with dashed arrows in Figure 11. The re-
sulting �26 and +14 mass metabolites were confirmed by in-
house MRM mass detection and subsequently in full metabo-
lite ID experiments. In parallel, data were published by FandiÇo
et al. ,[31] also indicating the formation of these metabolites.
These findings illustrate how the predictions by SyGMa sup-
port experimental metabolite ID and can lead to the identifica-
tion of unforeseen metabolites that may otherwise be missed
in fast screening approaches.

In the SyGMa predictions for buspirone, para-hydroxylation
of the pyrimidine moiety was assigned highest probability.
Blocking metabolically labile groups is a sensible approach to
improve metabolic stability.[32] Thus, on the basis of such a pre-
diction, medicinal chemists searching for a more stable ligand
may decide to introduce a fluorine substituent on the para po-
sition to block the hydroxylation step. Indeed, this p-fluoro-
ACHTUNGTRENNUNGpyrimidyl analogue of buspirone has been reported to show
an increased half-life of greater than one order of magnitude
in the presence of CYP 3A4, the most important enzyme in the
metabolism of buspirone.[33]

As another example of the potential of SyGMa in lead opti-
mization, Figure 12 shows the top-ranked prediction for dela-
virdine, an HIV-1 reverse transcriptase inhibitor. This N-dealkyla-
tion reaction was predicted with a high probability score of
0.38 and is indeed the major route of metabolism.[34] The half-
life of the compound in microsomal incubation is 11 min.[35] In
an effort to increase the metabolic stability, an analogue of
this compound has been synthesized in which the N-isopropyl
group is replaced by an ethoxy group; it showed an increased
half-life of 47 min.[35] In agreement with this observation,

Figure 11. Metabolic pathways of buspirone as summarized by Zhu et al. ,[30] complemented with two metabolites at the top, indicated by dashed arrows,
which were predicted and confirmed experimentally in the present study. Rankings in the SyGMa list of predicted metabolites, using phase 1 rules only, are
indicated. Reaction centers are indicated in boldface.
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SyGMa predicts the analogous metabolic reaction, O-de-ethyla-
tion, to be much less likely, that is, with a probability score of
0.08. In fact, other metabolic reactions are predicted at higher
probabilities for this analogue: aromatic hydroxylation, p=

0.16, and hydrolysis of the amide bond, p=0.10. These corre-
sponding metabolites have also been observed for delavirdine,
however at lower quantities. The above examples illustrate
that the predictions by SyGMa can be a useful tool to localize
labile sites and to successfully guide medicinal chemistry
aiming for metabolically more stable compounds.

Discussion

A rule-based method for the prediction of metabolites is pre-
sented that ranks predicted metabolites on the basis of proba-
bility scoring. Metabolic rules were developed by a combina-
tion of “expert knowledge” and empirical evaluation using a
large database of experimentally observed metabolic reactions.
A similarity analysis based on reaction fingerprints is presented
that provides a 2-dimensional representation of the diversity in
the reaction dataset, similar to another recently published ap-
proach based on self-organizing maps.[36] The latter approach
used calculated properties of the bonds in reactants and prod-
ucts, whereas the present approach uses the chemical struc-
ture of the molecules directly. An example is provided of how
this analysis can help to find gaps in a set of rules. Further-
more, a procedure is described to refine and optimize the
rules in order to improve the overall performance of the rule
base. About 70% of all known metabolic reactions observed in
human studies, both in the training set and the test set, are
covered by the current set of rules. Probability scores were cal-
culated from the fraction of the predicted metabolites that are
observed experimentally in the training set for each individual
rule. Ranking of the predicted metabolites on the basis of the
resulting probability scores is shown to successfully enrich the
predictions with true metabolites. Overall, 30% of all observed
metabolites in the test set, including 36% of the “major” me-
tabolites, are in the top three ranked predictions; 45% of all
observed metabolites in the test set, including 49% of the
“major” metabolites, are in the top 10. The performance with a
P450-specific test set is even better than with the complete

test set. In total, 84% of the P450 metabolites were repro-
duced by SyGMa, 66% of the metabolites were predicted in
the top three of the ranking list. The improved performance
on the latter test set may be partly explained by the fact that
it involves only single-step reactions. The prediction of multi-
step metabolites, like with the complete dataset, is more chal-
lenging. Combinations of appropriate with inappropriate meta-
bolic reactions result in false metabolites, even if the predic-
tion was “partially correct”. This effect does not occur in the
P450 dataset. It is important to note, however, that the perfor-
mance on the set of single-step reactions may be more repre-
sentative for the application in a medicinal chemistry setting,
in which the aim is to design metabolically stable compounds
by blocking the first step in a metabolic pathway. Other rea-
sons for the improved performance on the P450 dataset could
be that it involves a more limited range of reaction mecha-
nisms and that substrate–enzyme interactions (not taken into
consideration by SyGMa) may have a smaller effect on the ob-
served metabolism, as P450 enzymes are relatively substrate
nonspecific. The results indicate the value of SyGMa for identi-
fying labile sites in the search for chemical modifications that
increase metabolic stability. Examples have been given that il-
lustrate such application of SyGMa.

It is clear that not all possible metabolic reactions are cur-
rently covered in the rules. Rule-based systems inherently need
continued effort in updating, as new data becomes available;
novel chemical series may reveal new metabolic routes, and
experimental methods to elucidate metabolites become in-
creasingly powerful and may identify new metabolites not ob-
served in the past. Analysis based on reaction fingerprints, as
presented in this work, can help to maintain and update the
rule base. However, it is also likely that a fraction of metabolic
reactions may remain difficult to cover in general rules with a
broader validity than single unique examples. The present ap-
proach requires sufficient examples for new rules in order to
estimate a probability score, and this hampers the addition of
rules on the basis of unique examples.

In the present approach, the effect of chemical environment
on the susceptibility of a reaction center toward a certain reac-
tion is accounted for by defining multiple rules covering differ-
ent subsets of reaction centers. This approach takes chemical
reactivity into account in an approximate and empirical way
and, as mentioned above, is limited by the fact that each sub-
rule requires sufficient examples. As an alternative, probabili-
ties could be potentially correlated to calculated properties of
the atomic reaction center. In a recently published approach,
calculated atomic properties of reaction centers describing
chemical reactivity were used to classify reactants from non-re-
actants.[37] Statistical techniques may be applied in a similar
way to calculate probabilities suitable for ranking metabolites
which could further enhance the present approach. It is impor-
tant to note, however, that rule-based methods ignore the role
of specific interactions and orientation in enzymes that cata-
lyze the reaction. The question is whether a more sophisticat-
ed treatment of chemical reactivity would further improve the
predictions as long as the influence of the metabolizing en-
zymes is not taken into account.

Figure 12. Predicted main metabolic reaction for delavirdine.
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Given the demonstrated performance, SyGMa is a very suita-
ble tool to quickly produce reasonable and fairly complete sets
of potential metabolites. Such collections of potential metabo-
lites are becoming increasingly valuable in experimental me-
tabolite identification. Fast MRM or list-dependent MSn screens
can be setup on the basis of predicted metabolites to confirm
their presence in in vitro or in vivo samples.[2, 38] Furthermore,
state-of-the-art software can import masses and structures of
predicted metabolites and automatically confirm their pres-
ence in complex MSE or MS–MS datasets collected in experi-
mental metabolite identification studies.[3,38, 39] In both ways,
SyGMa has already proven its utility within experimental me-
tabolite ID studies performed within Organon, resulting in the
screening and identification of metabolites that would other-
wise have been missed.[38, 39]

Experimental Section

Datasets. Experimental metabolic reactions were retrieved from
MDL’s Metabolite Database, version 2001.[40] An advanced query
was performed to retrieve only data from studies in humans and
to exclude reactions with “presumed” reactants or products. Reac-
tions labeled “optical resolution” were also excluded, as these reac-
tions often refer to experimental analysis rather than actual meta-
bolic processes and because the current approach does not take
stereoisomerism into account. Furthermore, reactions with struc-
tures containing inorganic or undefined elements, such as �R or �
X, were removed, as well as reactions involving large (non-druglike)
molecules, that is, with molecular weight >900. The remaining da-
taset contained 6187 reactions observed with 1848 parent mole-
cules. Reactions were labeled “Major” when they were annotated
“Major” in the database on the basis of at least one referenced
publication. From the 6187 reactions, the complete set of 3144
unique reactant structures was obtained which was used for the
evaluation of reaction rules described below. The same procedure
was followed for datasets of reactions observed in rat and reac-
tions observed in in vitro studies using human and rat microsomes.
Final evaluation of the method was performed with an independ-
ent test set, which was extracted from the update of the MDL Me-
tabolite Database to the 2006 version, while the work on the meta-
bolic rules was in progress. BCI fingerprints[41] were used to analyze
the similarity between the test and training datasets. Each parent
molecule in the test set was compared with the most similar com-
pound in the training set. For 75% of the parent molecules this
comparison yielded a Tanimoto coefficient <0.8, and for 50%
<0.6, indicating sufficient diversity between the training and test
sets. For the purpose of further evaluation, a subset of cytochrome
P450 (CYP) reactions was taken from this new data, that is, reac-
tions indicated to be metabolized by one or more CYP isoenzymes.
Table 2 provides an overview of the various datasets used.

Reaction rules. We implemented a fast interpreter of generic reac-
tion rules encoded in the Daylight SMIRKS language,[42] which
allows systematic application of a set of rules to a compound
structure for a specified number of subsequent steps in order to
build up a complete reaction tree (as described in more detail
below). A SMIRKS rule consists of a molecular substructure query
(the “reactant side”) and a definition of how the matching sub-
structure is to be modified in the resulting product (the “product
side”). Figure 1 provides some simple examples of reaction rules
for primary alcohol oxidation. Atoms that are preserved in the re-
action are matched between the reactant and product side by

means of numeric labels (indicated by a colon). Unlabeled atoms
on the reactant and product side disappear and appear, respective-
ly. Furthermore, the SMIRKS language enables flexible query defini-
tions, defining, for example, element, valency, aromaticity, charge,
and ring membership of atoms as well as bond order and ring
membership of bonds. This allows the definition of rules that apply
to reaction centers with more or less specific chemical environ-
ments. Each rule was tested by applying it to all reactants in the
dataset. The resulting products were compared with the metabo-
lites reported in the database for the individual reactants. The
number of generated metabolites that match the experimentally
observed metabolites in the database was divided by the total
number of metabolites generated (which is equal to the number
of matches of the rule query in the reactant dataset). This ratio
provides an empirical probability score for the metabolic rule:

prule ¼
number of correctly predicted metabolites
total number of predicted metabolites

ð1Þ

The reacting atom centers of the metabolic reactions matching a
rule were examined with respect to the diversity of their direct
chemical environment. When possible (see below), the rule was
further refined to increase the probability ratio or split into multi-
ple rules to account for differences in “reactivity” of different reac-
tion centers toward the reaction. Refinement involved making the
query part more specific, which results in a decrease in the
number of incorrectly predicted metabolites. Division of rules re-
sulted in multiple rules covering different subsets of the experi-
mental reactions and yielding different probability ratios. For exam-
ple, in the case of aromatic hydroxylations, the presence of ortho,
meta, or para substituents were queried to distinguish more or
less activated sites. For aliphatic reaction centers, relevant distinc-
tions were made between reaction centers attached to aromatic,
aliphatic, or heteroatomic cores. At the same time, rules were kept
as general as possible to avoid over-fitting the rules to specific ex-
amples in the training set: each rule was required to match at least
10 compounds in the training set to yield a meaningful probability
score, and the matching experimental reactions should cover mul-
tiple compound classes. Furthermore, rules with probability ratios
below 0.01 were considered not predictive and either refined or re-
jected.

Predictions. Based on a complete set of rules, predictions are
made by systematically applying all metabolic reactions to a
parent molecule, thereby generating all possible metabolites.
When the prediction is made for multiple subsequent reaction
steps, each metabolite is again subjected to the set of reaction
rules, and this is repeated for a preset maximum number of reac-
tion steps. As a result, a network of metabolites connected by reac-
tions is generated. When a single cleavage reaction results in multi-
ple products, each product is treated as a separate metabolite. Me-

Table 2. Overview of the various datasets retrieved from the MDL Metab-
olite Database.

Dataset Parents Unique
reactants

Reactions

Human in vivo 1848 3144 6187
Human in vitro 962 1270 2189
Rat in vivo 2765 4966 9262
Rat in vitro 1609 2205 3806
Human in vivo test-set 175 288 385
CYP test set 105 106 127
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tabolites generated via more than one route are represented by a
single “node” linking both branches of the metabolic network. This
avoids duplication of metabolites as well as repetition of equiva-
lent branches in the “metabolic tree”. Minor cleavage products
consisting of only a small fraction of the parent (e.g. resulting from
hydrolysis or dealkylation of small groups) are often considered ir-
relevant. In the present implementation, small fragments are re-
moved from the metabolic tree if they contain <15% of the
atoms of the parent. This 15% cutoff was chosen based on the
training set in which none of the experimental metabolites fell
below this cutoff value.

When the metabolic network is completed, each metabolite is as-
signed the probability score from the reaction rule(s) from which it
was formed. For metabolites resulting from multiple reaction steps,
the probability scores of the individual steps are multiplied which
assumes independence of the subsequent reactions of a metabolic
pathway. This assumption is reasonable, as subsequent steps in a
pathway are often carried out by different enzymes. When metabo-
lites can be formed via different metabolic routes, the route result-
ing in the highest probability is selected. This approach was
chosen to allow a rule set with overlapping (i.e. redundant) rules,
for example, containing a general rule as well as a more specific
rule covering a specific subset of reaction centers with a higher
probability ratio. An example for which this approach is helpful is
described in the Results section and concerns a redundancy in the
rules for the oxidation of primary carbons. Finally, the 2D structures
of all the metabolites in the reaction tree are generated. To facili-
tate visual inspection of the results, unchanged atoms of metabo-
lites inherit the original coordinates, while coordinates for new
atoms are optimized with respect to existing coordinates using a
stochastic proximity embedding algorithm.[43] The metabolite struc-
tures are reported in order of decreasing probability score.

The predictions were evaluated in terms of recall and precision, de-
fined as:

recall ¼ number of correctly predicted metabolites
total number of experimental metabolites

ð2Þ

precision ¼ number of correctly predicted metabolites
total number of predicted metabolites

ð3Þ

Note that Equation (3) for the precision is identical to Equation (1)
for the probability of a rule. However, the precision is defined for
the application of the entire rule set, whereas the probability score
involves a singe rule.

Calculation of reaction fingerprints. An important feature of the
rule base is its completeness in terms of coverage of the reactions
in the training dataset. We implemented reaction fingerprints to
analyze the contents of a reaction dataset. The fingerprints are
used for clustering and visualization of the current training set, to
analyze the coverage of the current rule base, and to support the
search for new rules. The reaction fingerprints we applied describe
the difference between the reactant and the product fingerprints
and are based on an augmented atom description of the struc-
tures involved in a reaction.[44] First, fingerprints were generated
for reactant and product molecules separately, based on Sybyl
atom types and atom types augmented with a single layer around
the central atom. This is illustrated in Table 3 on the basis of the
example reaction in Figure 13. Up to 10 occurrences of an (aug-
mented) atom type are distinguished. The difference fingerprint is
defined by the differences in occurrence of each atom type in the
reactant and product fingerprints. Thus, atom types with equal

counts in the reactant and product fingerprints vanish in the differ-
ence fingerprint[45] (Table 4).

Based on the difference fingerprints, similarity coefficients such as
the Tanimoto coefficient can be calculated between pairs of reac-
tions and subsequently used for clustering or other types of analy-
sis. Reactions which involve removal, addition, or modification of
defined molecular groups have very similar fingerprints. It should
be noted, however, that other reactions, such as dealkylation or hy-
drolysis, involve removal of nonspecific parts of a molecule, which
may result in more different fingerprints. We used the calculated
Soergel distance (i.e. 1.0 minus the Tanimoto similarity coefficient)
in combination with a 2D projection based on stochastic proximity
embedding[43] to visualize the contents of the reaction database
and the coverage by the SyGMa rules. This method optimizes the
distances between points on a 2D plane to correspond as much as
possible to the distances calculated in the fingerprint space be-
tween all pairs of metabolic reactions. The resulting scatter plot
provides a 2D map of the metabolic reactions in which similar re-
actions are clustered together.
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Table 3. Sybyl atom types and (1 layer) augmented atom types for prop-
anol.[a]

Atom 1 2 3 4

Sybyl type C.3 C.3 C.3 O.3

Augmented
atom type

C.3
C.3

C.3
C.3 C.3

C.3
C.3 O.3

O.3
C.3

[a] Atom labels according to Figure 13.

Figure 13. Reaction of propanol to propane-1,3-diol.

Table 4. Atomic fingerprints for the reactant 1-propanol and the product
propane-1,3-diol, as well as the difference fingerprint to represent the re-
action.

C.3 O.3 C.3
C.3

C.3
C.3 C.3

C.3
C.3 O.3

O.3
C.3

Reactant 3 1 1 1 1 1
Product 3 2 0 1 2 2
Reaction 0 +1 �1 0 +1 +1
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